:::

Academic Performance

:::
Paper contents
Paper category碩士論文
Student ID No.9125614
Name朱校興
標題(中)以攝氧率量測AO程序異營/硝化族群質量及動力參數之研究
標題(英)Determination of Heterotrophic/Autotrophic Biomass and Kinetic Coefficients in AO Activated Sludge Process Using Oxygen Uptake Rate
Adviser白子易
Graduation date2004-06
Attached file 
Reference linkhttp://ir.lib.cyut.edu.tw:8080/handle/310901800/1695
Abstract生物去除營養鹽 (biological nutrient removal BNR) 活性污泥系統為廢水處理廣為使用之程序,而BNR系統包括異營菌、氨氮氧化菌、亞硝酸氮氧化菌等微生物功能族群。因此區分微生物族群之活性比例,將有助於了解水體內微生物與碳、氮、磷轉化之間的關聯,本研究之目的乃利用攝氧率實驗量測A/O活性污泥系統中XH、XAOB及XNOB動力參數,並將所得之參數代入TWEA1程序速率式積分,以定量系統中XH、XAOB及XNOB之biomass。A/O模廠為厭氧、好氧串聯之處理系統,包含厭氧槽及好氧
BibliographyAndreottola G., Foladori P., Gelmini A. and Ziglio G. (2002). Biomass active fraction evaluated by a direct method and respirometric techniques, Water Science and Technology, 46(1-2), 371-379.
Argaman Y. and Papkov G. (1995). A Steady-Ttate Model for the Single Sludge Activated Sludge System-Ⅱ Model Application, Water Science and Technology, 29(1), 147-153.
Barnard J. L. (1973). Biological denitrification, J. Water Pollution Control Federatuon, 45(6), 705.
Barnard J. L., Stevens G. M. and Lesile P. J. (1985). Desigen strategies nutrient removal plants, Water Science and Technology, 17(11-12), 147-162.
Bedard C. and Knowles R. (1989). Physiology, biochemistry and specific inhibitors of CH4, NH4+ and CO oxidation by methanotrophs and nitrifiers, Microbiol. Rev., 53:68-84.
Belser L. W. and Mays E. L. (1980). Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments, Appl.Environ.Microbiol., 39:505-510.
Brouwer H., Bloemen M., Klapwijk B. and Spanjers H. (1998a). Feedforward control of nitrification by manipulating the aerobic volume in activated sludge plants, Water Science and Technology, 38(3), 245-254.
Brouwer H., Klapwijk B. and Bloemen M. (1998b). Identification of activated sludge and wastewater characteristics using respirometric batch-experiments, Water Research, 32(4), 1240-1254.
Chandran K. and Smets B.F. (2000). Applicability of two-step models in estimating nitrification kinetics from batch respirograms, Biotechnology and Bioengineering, 70(1), 54-64.
Daigger G. T. and Polson S. R. (1991). Design and operation of biological phosphorus removal facilites, In: Phosphorus and nitrogen removal from municipal wastewater-principles and practice, R. I. Sedlak (ed), 2rd edn, Lewis publishers, New York, 167-198.
Dawson R. N. and Murphy K. L. (1972). The temperature dependency of biological denitrification, Water Research, 6(3), 71-80.
Deinema M. H., Van Loosdrecht M. and Scholten A. (1984). Some physiological characteristics of acinetobactor spp. Accumulation large amounts of phosphate, Water Science and Technology, 17(11-12), 119-125.
Gernaey A. K., Petersen B., Ottoy J. P. and Vanrolleghem P. (2000). Actived Sludge Monitoring with Combined Pespirometric-Titrimeteric Measurements, Water Research, 35(5), 1280-1294.
Gernaey A.K., Petersen B., Ottoy J. and Vanrolleghem P. (2001). Activated sludge monitoring with combined respirometric– titrimetric measurements, Water Research, 35(5), 1280-1294.
Harremoes P., Haarob A., Winther-Nielsen M. and Thirsing C. (1998). Six Years of Pilot Plant Studies for Design of Treatment Plants for Nutrient Removal, Water Science and Technology, 38(1), 219-226.
Heascoet M. C. and Florentz M. (1985). Influence ofnitrate on biological phosphorus removal from wastewater, Water SA, 11(1), 1-8.
Henze M., Grady Jr. C.P.L., Gujer W, Marais G.v.R. and Matsuo T. (1987). Activated sludge model no. 1. Scientific and technical report no.1, International Association on Water Pollution Research and Control, London.
Henze M., Gujer W., Mino T., Matsuo T., Wentzel M.C. and Marais G.v.R. (1995a). Activated sludge model no.2, IAWQ Scientific and technical report no.3, IAWQ, London.
Henze M., Gujer W., Mino T., Matsuo T., Wentzel M.C., Marais G.v.R. and van Loosdrecht M.C.M. (1999). Activated sludge model no.2d, ASM2d, Wat. Sci. Tech., 39(1), 165-182.
Henze M., Gujer W., Mino T. and van Loosdrecht M.C.M. (2000). Activated sludge models: ASM1, ASM2, ASM2d and ASM3, IWA, London.
Hooper A. B. and Terry K. R. (1973). Specific inhibitors of ammonia oxidation in nitrosomonas, J.Bacteriol, 115:480-485.
Kappeler J. and Gujer W. (1992). Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modelling, Water Science and Technology, 25(6), 125-139.
Kappeler J. and Brodmann R. (1995). Low F/M bulking and scumming: towards a better understanding by modeling, Water Science and Technology, 31(2), 225-234.
Kartik C. and Barth F. S. (2000). Applicability of two-step models in estimating nitrification kinetics from batch respirograms under different relative dynamics of ammonia and nitrite oxidation, Biotechnology Bioengineering, 70(1), 54-64.
Kerrn-Jespersen P. J. and Henze M. (1993). Biological phosphorus uptake under anoxic and aerobic conditions, Water Research, 27(4), 617-624.
Kristensen G. H., Jorgensen P. E. and Henze M. (1992). Characterization of Functional Microorganism Groups and Substrate in Activated Sludge and Wastewater by AUR, NUR and OUR, Water Science and Technology, 25(6), 43-57.
Kuba T., Smolders G., van Loosdrecht M. C. M. and Heijnen J. J. (1993). Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor, Water Science and Technology, 27(5-6), 241-252.
Kuba T., van Loosdrecht M. C. M. and Heijnen J. J. (1996). Effect of cyclic oxygen exposure on the activaty of denitrifying phosphorus removing bacteria, Water Science and Technology, 34(1-2), 33-40.
Leenen E. J. T. M., van Boxtel A. M. G. A., Englund G., Tramper J. and Wijffels. R. H. (1997). Reduced Temperature sensitivity of Immobilized Nitrobacter Agilis Cells Caused by Diffusion Limitation, Elsevier Science Inc., 20, 573-580.
Lee D.S., Jeon C.O. and Park J.M. (2001). Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system, Water Research, 35(16), 3968-3976.
Levin G. V. and J. Shapiro (1965). Metabolic uptake of phosphorus by wastewater organisms, J. Water Pollution Control Federatuon, 37(6), 800.
Mamais D. and Jenkins D. (1992). The effect of MCRT and temperature on enhanced biological phosphorus removal, Water Science and Technology, 26(5-6), 955-965.
Manga J., Ferrer J., Garcia-Usach and Sexo A. (2001). A modofocation to the activated Sludge model no. 2 based on the competition between phosphorus-accumlating organisms and glycogen- accumlating organisms, Water Science and Technology, 43(11), 161-171.
Marsili-Libelli S. and Tabani F. (2002). Accuracy analysis of a respirometer for activated sludge dynamic modeling, Water Research, 36, 1181-1192.
Meinhold J., Pedersen H., Arnold E., Isaacs S. and Henze M. (1998). Effect of continuous addtion of an organic substrate to the anoxic phase on biological phosphorus removal, Water Science and Technology, 46(1-2), 371-379.
Meinhold J., Filipe C. D. M., Daigger T. G. and Isaacs S. (1999). Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal, Water Science and Technology, 39(1), 31-42.
Mino T., San Pedro D. C., Yamamoto S. and Matsuo T. (1997). Application of the IAWQ Activated Sludge Model to Nutrient Removal Process, Water Science and Technology, 35(8), 111-118.
Nowak O., Svardal K. and Schweighofer P. (1995). The dynamic behaviour of nitrifying activated sludge systems influenced by inhibiting wastewater compounds, Water Science and Technology, 31(2), 115-124.
Pai T.Y., Chuang S.H., Tsai Y.P. and Leu H.G. (2004). Development of two-stage nitrification/denitrification model (TaiWan Extension Activated sludge model NO.1) for BNR process, Journal of the Chinese Institute of Environmental Engineering, 14 (1). (In press)
Pai T.Y., Chang H.Y., Tsai Y.P. and Chuang S.H. (2004). Modeling nitrite and nitrate variations in TNCU2 process using extended activated sludge model, 4th World Congress of the IWA, Marrakech, Morocco. (accepted)
Philippe Ginestet, Jean-Marc Audic, Vincent Urbin and Jean-Claude Block (1998). Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence metabolic inhibitors allylthioures and azide, Applied and Environmental Microbiology, 64(6), 2266-2268.
Rieger L., Koch G., Kuohni M., Gujer W. and Siegrist H. (2001). The EAWAG bio-p module f or Activated Sludge Model No.3, Water Research, 35(16), 3887-3903.
Sharma B. and Ahlert R. C. (1977). Nitrification and nitrogen removal, Water Research, 11:897-925.
Sollfrank U. (1988). Bedeutung organischer fraktionen in kommunalem abwasser in hinblick auf die mathematische modellierung von belebtschlammsystemen, Dissertation NO. 8765. ETH Z rich.
Tartakovsky B., Kotlar E. and. Sheintuch M. (1996). Coupled Nitrification-Denitrification Processes in a Mixed Culture of Coimmobilized Cells: Analysis and Experiment, Chemical Engineering Science, 51(10), 2327-2336.
Tomlinson T. G., Boon A. G. and Trotman C. N. A. (1966). Inhibition of nitrification in the activated sludge process of sewage disposal, Appl. Bacteriol, 29:266-291.
Van Veldhuizen H.M., Van Loosdrecht M.C.M. and Heijnen J.J. (1999). Modelling biological phosphorus and nitrogen removal in a full scale activated sludge process. Water Research, 33(16), 3459-3468.
Volsch A., Nader W. F., Geiss G. K., Sonntag H. G. and Birr C. (1990). Test zur bestimmung der aktivtat vonnitrifizerenden bak and Ahlert terien in belebtsechlamm, GWF Wasser-Abwasser 131, 301-306.
WEF. (1999). Biological and Chemical Systems for Nutrient Removal, Water Environment Federation, VA.
Wanner J., Cech J. S. and Kos M. (1992). New process design for biological nutrient removal, Water Science and Technology, 25(4-5), 445-448.
Wentzel M. C., Ubisi M. F. and Ekama G. A. (1998). Heterotrophic active biomass component of activated sludge mixed liquor, Water Science and Technology, 37(4-5), 79-87.
Wiesman U. (1986). Kinetic der aeroben abwasserreinigung durch deu abbau von organischen verbindungen and nitrification, Chem. Ing. Tech., 58(6), 464-474.
Wild D., Von Schulthess R. and Gujer W. (1995). Structure modelling of denitrification intermediates, Water Science and Technology, 31(2), 45-54.
參考文獻(中文部分)
白子易,「下水道系統生化動力模式建立之研究」,國立中央大學環境工程學研究所,博士論文,中壢 (2000)。
莊順興,「脫氮除磷代謝模式與反應動力之研究」,國立中央大學土木工程學研究所,博士論文,中壢 (1997)。
蘇昭郎,「厭氧好氧RBC及活性污泥去除營養源之研究特性」,國立中央大學土木工程學研究所,博士論文,中壢 (1996)。
廖婉君,「利用攝氧率量測AO活性污泥程序異營菌質量及動力參數之研究」,私立朝陽科技大學環境工程與管理系,碩士論文,台中 (2003)。
吳韋民,「利用批次實驗推求活性污泥模式(ASM1)反應動力參數之研究」,國立暨南國際大學土木工程學系,碩士論文,南投 (2003)。
潭仲萍,「添加固定化擔體對AO及AOAO程序脫氮除磷影響之研究」,國立雲林科技大學環境安全工程系,碩士論文,雲林 (2001)。
沈裕智,「變動負荷特性與殘留基質對缺氧釋磷攝磷現象之探討」,國立中央大學環境工程學研究所,碩士論文,中壢 (2000)。
白子易,蔡勇斌,莊順興,呂鴻光,“BNR活性污泥程序二階段硝化模式 (台灣活性污泥模式TWEA1) 之發展”,第十三屆下水道及水環境再生研討會,台灣水環境再生協會論文集,pp.299-308,台北 (2003)。
白子易,莊順興,許鎮龍,蘇昭郎,邱仁杰,“以台灣活性污泥模式 (TWEA1) 模擬A2O程序於變動SRT之硝化菌族群動力”,第二十八屆廢水處理技術研討會,中華民國環境工程學會,台中 (2003)。

Gallery

Decorative imageDecorative imageDecorative imageDecorative imageDecorative imageDecorative image
cron web_use_log